

Numerical analysis for mesoscale design of weaving and its structural rigidity

Atsushi SAKUMA, Hikaru MIYAKI, Yue ZHANG , Jianliang ZHANG

Kyoto Institute of Technology, Kyoto, Japan

Computational modeling of woven textile

Multi-scalability in woven fabrics

Computational modeling of woven textile

Multi-scalability in woven fabrics

Computational modeling of woven textile

Development of Digital Design Technology on "Touch Feeling"

Formulation of weaving

Unit-cell Modeling to Solve Periodic Boundary Problem

- Orthogonal symmetric deformation (orthogonal coordinates) -

Whole modeling

Unit-cell modeling

Unit-cell Modeling due to Symmetricity

Orthogonal symmetric

Plain woven fabric

http://textilelearner.blogspot.com/2011/03/definition-and-characteristics-of-plain_4390.html

Unit-cell Modeling due to Symmetricity

Orthogonal symmetric

Plain woven fabric

http://textilelearner.blogspot.com/2011/03/definition-and-characteristics-of-plain_4390.html

Unit-cell modeling depends on **geometrical symmetricity**

Brick type

Computation

Cell type selection

Cell type selection

Periodic Boundary Condition for Corner Model

Constraint equation

$$\sum \alpha_n u_{si}^n = 0$$

n: Nodal ID, s: Section ID, i: Direction

For warp :

京都工芸 繊 維大学 KYOTO INSTITUTE OF TECHNOLOGY

Periodic Boundary Condition for Corner Model

 $\sum \alpha_n u_{si}^n = 0$ n: Nodal ID, s: Section ID, i: Direction <u>For warp</u>: Absolutely axisymmetric $\sum_{n} (\alpha_n u_{0x}^n |_{\text{warp}} + \alpha_n u_{1x}^n |_{\text{warp}}) = 0$

MULTIPLE_GLOBAL can be defined without definition of SPC_SET

Periodic Boundary Condition for Corner Model

Periodic Boundary Condition for Corner Model

Constraint equation $\sum \alpha_n u_{si}^n = 0$ n : Nodal ID, s : Section ID, i : DirectionFor warp : Absolutely axisymmetric $\sum_n (\alpha_n u_{0x}^n |_{warp} + \alpha_n u_{1x}^n |_{warp}) = 0$ $\sum_n (\alpha_n u_{0z}^n |_{warp} + \alpha_n u_{1z}^n |_{warp}) = 0$ $(\alpha_n = 1.0)$ For weft : Relatively axisymmetric

$$\sum_{n} (\alpha_n u_{0y}^n |_{\text{weft}} + \alpha_n u_{1y}^n |_{\text{weft}}) = 0$$

$$\sum_{n} (\alpha_n u_{0z}^n |_{\text{weft}} + \alpha_n u_{1z}^n |_{\text{weft}} + \bar{\alpha}_n \bar{u}_z^n |_{\text{weft}}) = 0$$

$$(\alpha_n = 1.0, \ \bar{\alpha}_n = -2.0)$$

MOTION_SET causes conflict with MULTIPL_GLOBAL in LS-DYNA

9.4 Application to comfort design FE Modeling to Solve Deformation Problem

Mechanical model and boundary condition

FE modeling

Pressure [MPa]

Elastic

Low_Density_Foam

Simulation Time [sec]

Tensile rigidity

Tensile rigidity

Cell type selection

Tensile rigidity

Tensile rigidity

Analysis parameters in tensile behavior

Tensile Analysis condition

Weave pattern ratio $\Upsilon = 2\lambda/d$

\bigcirc	
ji) A	→
)}	+

Boundary condition (Constraints) Forced displacement u_x

	γ=6	γ=12	γ=20
Wire Diameter <i>d</i> [mm]	1.0	1.0	1.0
Weave pattern ratio γ	3.0	6.0	10.0
Constitutive equation	Elastic	Elastic	Elastic
Density ρ [kg/m ³]	400	400	400
Young's modulus E [Pa]	1000	1000	1000
Poisson ratio v	0.49	0.49	0.49
Number of Nodes	98304	109500	179580
Number of Elements	56940	95232	156672
Analysis method	Implicit	Implicit	Implicit
Forced displacement u_x [mm]	0.3	0.6	1.0

Analysis of tensile

Tension analysis at three types of stress situations

Tensile direction

Discussion

The effect of strain

- Stiffness per unit length of fabric structure changes with increasing tensile length
- The consideration of residual stress will obviously affect the stiffness,
- It will show different effects with different weave pattern ratios,

• A certain rigid cloth, which can be obtained with a lower soft thread

- Relationship between stiffness per unit length and fabric pattern ratio at the beginning of tensile
- Residual stresses give fabric structures higher stiffness at smaller weave pattern ratio, but this effect is not always maintained

- The presence or absence of internal stresses must be taken into consideration.
- The way to consider is also important₃,

Conclusion

- 1. A method to consider the weaving stress of the plain weave structure is introduced by homogenization
- 2. The elastic deformation of a structure after weaving process also computed by numerical simulation.
- 3. Quantitative evaluation of the stress effect in weaved structure is simulated after unloading, and effect of the weave pattern ratio is also discussed.

Thank you for your attention

ご清聴 ありがとう ございました

